PENERAPAN METODE MULTIVARIATE CREDIBILITY BONUS MALUS PREMIUM PADA DATA ASURANSI KENDARAAN BERMOTOR DI INDONESIA

  • Sinta Asanah Prodi Statistika, Fakultas MIPA, Universitas Islam Bandung
  • Aceng Komarudin Mutaqin
Keywords: Besar Klaim, Distribusi Binomial Negatif, Metode Penaksiran Kemungkinan Maksimum, Premi, Sistem Bonus Malus, Bonus Malus System, Claim Size, Maximum Likelihood Estimation, Negative Binomial, Premium

Abstract

Abstrak: Pada penelitian ini akan dibahas mengenai perhitungan premi berdasarkan sistem bonus malus dengan metode multivariate credibility bonus malus premium menggunakan model trivariat yang membedakan besar klaim menjadi tiga jenis klaim yaitu besar klaim yang tinggi, besar klaim yang sedang, dan besar klaim yang rendah. Parameter model trivariat ditaksir menggunakan metode penaksiran kemungkinan maksimum. Distribusi untuk frekuensi klaim adalah distribusi binomial negatif dengan distribusi dasarnya yaitu distribusi Poisson. Sedangkan, penjumlahan kategori besar klaim untuk satu polis dimodelkan oleh distribusi binomial. Berdasarkan metode penaksiran kemungkinan maksimum, diperoleh nilai taksiran distribusi trivariat yaitu a=1,6095, b=4,3985, a1=1,4614, b1=4,5272, a2=1,4998, dan b2=1,4253. Nilai taksiran parameter tersebut digunakan untuk menghitung premi dan diperoleh nilai premi yaitu semakin banyak jumlah klaim yang diajukan seorang pemegang polis, maka akan semakin besar premi yang harus dibayarkan oleh pemegang polis tersebut. Selain itu, semakin meningkat kategori besar klaimnya, maka premi yang harus dibayar pemegang polis akan semakin besar.

Abstract: This study will discuss the premium calculation based on the bonus malus system using the multivariate credibility bonus malus premium method using the trivariate model which differentiates claim size into three types of claims, namely high claim size, moderate claim size, and low claim size. The parameters of the trivariate model were estimated using the maximum likelihood estimation method. The distribution for the frequency of claims is the negative binomial distribution with the basic distribution being the Poisson distribution. Meanwhile, the sum of major categories of claims for one policy is modeled by the binomial distribution. Based on the maximum likelihood estimation method, the estimated values of the trivariate distribution are a=1,6095, b=4,3985, a1=1,4614, b1=4,5272, a2=1,4998, and b2=1,4253. The estimated value of these parameters is used to calculate the premium and the premium value is obtained, namely the more the number of claims submitted by a policyholder, the greater the premium that must be paid by the policyholder. In addition, the greater the category of claims, the greater the premium to be paid by policyholders.

References

Adisti, Rillifa Iris, and Aceng Komarudin Mutaqin. 2021. “Perhitungan Premi Murni Pada Sistem Bonus Malus Untuk Frekuensi Klaim Berdistribusi Binomial Negatif Dan Besar Klaim Berdistribusi Weibull Pada Data Asuransi Kendaraan Bermotor Di Indonesia.” Jurnal Gaussian 10(2):170–79. doi: 10.14710/j.gauss.v10i2.30084.

Casella, George. 1985. “An Introduction to Empirical Bayes Data Analysis.” American Statistician 39(2):83–87. doi: 10.1080/00031305.1985.10479400.

Gómez-Déniz, E. 2016. “Bivariate Credibility Bonus-Malus Premiums Distinguishing between Two Types of Claims.” Insurance: Mathematics and Economics 70:117–24. doi: 10.1016/j.insmatheco.2016.06.009.

Gómez-Déniz, Emilio, and Enrique Calderín-Ojeda. 2018. “Multivariate Credibility in Bonus-Malus Systems Distinguishing between Different Types of Claims.” Risks 6(2):1–11. doi: 10.3390/risks6020034.

Gómez, E., A. Hernández, J. M. Pérez, and F. J. Vázquez-Polo. 2002. “Measuring Sensitivity in a Bonus-Malus System.” Insurance: Mathematics and Economics 31(1):105–13. doi: 10.1016/S0167-6687(02)00125-7.

Lemaire, By Jean. 2004. “Bonus-Malus Systems.” 6218:1–10.

Mert, Mehmet, and Yasemin Saykan. 2005. “On a Bonus-Malus System Where the Claim Frequency Distribution Is Geometric and the Claim Severity Distribution Is Pareto.” Hacettepe Journal of Mathematics and Statistics 34(1):75–81.

Published
2023-11-07
How to Cite
Sinta Asanah, & Aceng Komarudin Mutaqin. (2023). PENERAPAN METODE MULTIVARIATE CREDIBILITY BONUS MALUS PREMIUM PADA DATA ASURANSI KENDARAAN BERMOTOR DI INDONESIA. Premium Insurance Business Journal, 10(2), 1-11. https://doi.org/10.35904/premium.v10i2.52