PENENTUAN TARIF PREMI PADA ASURANSI KENDARAAN DENGAN BESAR KLAIM BERDISTRIBUSI EKSPONENSIAL DAN GAMMA
Abstract
Calculation of vehicle insurance premium rates can be done using the aggregate claims model. The aggregate claims model consists of a combination of two independent random variables, namely the number of claims that occur and the amount of claims for each event. The research method is in the form of literature studies and case studies using secondary data in the form of data on the number of claims and the amount of claims collected from January 2013 to December 2019. Based on the data collected, there were 802 claims with the smallest claim being IDR 50,000 and the largest being IDR 211,715,000. Testing the hypothesis shows that the data on the number of claims has a Poisson distribution, and the amount of claims follows two types of distribution, namely the exponential and gamma distribution so that the aggregate claim distribution is a combination of Poisson-Exponential and Poisson-Gamma. Parameter estimation for each distribution is carried out by the moment method with available secondary data. This study concludes that the use of the pure premium principle provides the same premium rate for both distributions of aggregate claims, amounting to IDR 82,856.39 per month per person. While the use of the expected value principle provides a premium rate for the Poisson-Gamma aggregate claims distribution 8.76 times greater than the Poisson- Exponential aggregate claims distribution, namely IDR 1,920,019.55 per month and IDR 219,155.20 per month, respectively.
References
Bain, L.J., dan Engelhardt, M. (1992). Introduction to Probability and Mathematical Statistics. Edisi Kedua. California: Duxbury Press.
Bowers, Jr. N.L., Gerber, H.U., Hickman, J.C., Jones, D.A., dan Nesbitt, C.J. (1997). Actuarial Mathematics. Edisi Kedua. Illinois: The Society of Actuaries.
Chrisan, K.W., Altien, J.R., dan Tohap, M. (2019). Model Distribusi Data Klaim Asuransi Mobil untuk Menentukan Premi Murni. d’Cartesian, Jurnal Matematika dan Aplikasi, Vol. 8, No. 2, 108-113.
Dickson, D.C.M. (2005). Insurance Risk and Ruin. Cambridge: Cambridge University Press.
Djuric, Z. (2013). Collective Risk Model in Non-Life Insurance. Economic Horizons, Vol. 15, No. 2, 167-175.
Fitriani, R. dan Gunardi (2020). Implementasi Metode Bayes pada Penghitungan Premi Asuransi Kendaraan Bermotor. Journal of Fundamental Mathematics and Application, Vol. 3, No. 2, 112-123.
Gumilar, I. R. (2019). Penaksiran Cadangan Dana pada Asuransi Kendaraan Bermotor Melalui Pendekatan Bayesian; Model Banyaknya Klaim: Poisson-Gamma dan Model Ganti Rugi: Lognormal-InversChi-square- Normal. Jurnal Wacana Ekonomi, Vol. 18, No. 2, 109-120.
Klugman, S.A., Panjer, H.H., dan Willmot, G.E. (1998). Loss Models: From Data to Decisions. New Jersey: John Wiley & Sons, Inc.
Lumbanbatu, R.M. (2015). Modeling Insurance Claims Using a Compound Distribution. International Journal of Science and Research, Vol. 10, No. 3, 1505-1516.
Manimaran, R., Balakrihnan, V., and Narayanan, V. (2014). A Collective Risk Theory in Reinsurance. International Journal of Innovation in Science and Mathematics, Vol. 2, No. 1, 151-153.
Mohamed, M.A., Razali, A.M. and Ismail, N. (2010). Approximation Aggregate Loss Using Simulation. Journal of Mathematics and Statistics, Vol. 6, No. 3, 233-239.
Mutaqin, A. K. dan Safitri, R. P. (2020). Pemodelan Besar Klaim Asuransi Kendaraan Bermotor Indonesia Menggunakan Model Komposit Log-Logistik-Generalized Pareto. Statistika, Vol. 20, No. 2, 101-107.
Nino, S. and Paolo, C.G. (2010). A Collective Risk Model for Claim Reserve Distribution. Proceeding of the 29th International Congress of Actuaries – ICA 2010, Cape Town, March 7-12, 2010, pp. 1-22.
Prabowo, A., Mamat, M. Sukono, and Taufiq, A.A. (2019). Pricing of Premium for Automibile Insurance using Bayesian Method. International Journal of Recent Technology and Engineering, Vol. 8, No. 3, 6226-6229.
Putra, T. A. J., Lesmana, D. C., dan Purnaba, I. G. P. (2021). Penghitungan Premi Asuransi Kendaraan Bermotor Menggunakan Generalized Linear Models dengan Distribusi Tweedie. Jambura Journal of Mathematics, Vol. 3, No. 2, 115-127.
Riaman, Sukono, Susanti, D., Marbun, E. and Bon, A.T.B. (2018). Net Premium Estimation by Using Forward Selection Linear Model for Motor Vehicle Insurance. Proceeding of the International Conference on Industrial Enginering dan Operation Management (IEOM), Bandung Indonsia, March 6-8, 2018, pp. 2711-2717.
Rillifa, I.A., dan Aceng, K.M. 2021. Perhitungan Premi Murni pada Sistem Bonus Malus untuk Frekuensi Klaim Berdistribusi Binomial Negatif dan Besar Klaim Berdistribusi Weibull pada Data Asuransi Kendaraan Bermotor di Indonesia. Jurnal Gaussian, Vol. 10, No. 2, 171-179.
Sukono, Nahar, J., Mamat, M., Putri, F.T., and Supian, S. (2017). Estimation of Outstanding Claims Reserving Based on Inflation Risk on Car Insurance Companies by Using the Bootstrap Method. Far East Journal of Mathematical Sciences, Vol. 102, No. 4, 687-706.
Sukono, Riaman, Lesmana, E., Wulandari, R., Napitupulu, H., and Supain, S. (2018). Model Estimation of Claim Risk and Premium of Motor Vehicle Insurance Using Bayesian Method. IOP Conf. Series: Material Science and Engineering, 300(2018): 012027.
Walpole, R.E., Myers, R.H., Myers, S.L., dan Ye, K. 2011. Probability and Statistics for Engineers and Scientists. Boston: Pearson Education.